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ABSTRACT 

Isothermal vapour-liquid equilibrium and excess enthalpy data for binary mixtures of 
acetic acid with 2-butanone, ethyl acetate and water are analysed using an association model, 
which employs the dimerisation constant of acetic acid and the solvation constant of 1: 1 
complex formation between acetic acid and an active unassociated component with allowance 
for a physical contribution given by the NRTL equation. Calculated results agree well with 
experimental values. 

INTRODUCTION 

The thermodynamic properties of liquid mixtures containing self-associat- 
ing and/or solvating components have been studied using useful models 
with a combination of chemical and physical interactions. Strong chemical 
interactions result in the formation of chemical species between like and 
unlike molecules. Many association models have employed separate chem- 
ical and physical contribution terms. 

The isothermal vapour-liquid equilibrium and excess enthalpy data of 
binary solutions containing acetic acid and a non-polar component have 
been successfully analysed using an association model which assumes only 
the dimerisation equilibrium of acid molecules with physical interactions 
between chemical species [l]. In this work, an extended form of the previous 
approach is presented to correlate vapour-liquid equilibrium and excess 
enthalpy data for mixtures of acetic acid with 2-butanone, ethyl acetate and 
water under the assumptions of the dimerisation of acetic acid molecules as 
well as the 1 : 1 solvation of an acetic acid molecule and an active unassoci- 
ating component molecule. 

* Author to whom correspondence should be addressed. 
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SOLUTION MODEL 

In a binary mixture of acetic acid (A) and a solvating component (B) 
there exist four chemical species A,, A,, AB and B, according to two 
chemical reactions (A, + A, + A, and A, + B, -+ AB) [2]. The thermody- 
namic dimerisation constant for the acid K, and the solvation constant KAB 
are defined by 

K,= 
XA*,YA*I 

= K,*K; = xAIyA, 

cxA,yA, 1’ 

= K,K, 0) 

where xA,? xA , xAB and xB, are the true mole fractions of the monomer and 
dimer of the acid, the heterodimer of the acid and a solvating component 
and the monomer of a solvating component respectively, yA, and yA, are the 
activity coefficients of the monomer and dimer of the acid, K, is the 
liquid-phase mole fraction dimerisation constant as defined by x,?/xi,, K, 

is the activity coefficient ratio given by y,,/yi,, and the superscript * 
indicates a pure acid state. 

The NRTL equation [3] is used to express the activity coefficient of any 
chemical species i: 

c 7/J+, 

In ” = ~G,,x, + T 
h 

(3) 

where the coefficients 3, and G,, are expressed in terms of the energy 
parameter a,, : 

‘/1 = aJ!/T (4) 

GJ, = exd - aJ1~l > (5) 

In the determination of the energy parameters a,, and the non-randomness 
parameters 01~,, there are four options and the following assignment for a,, is 
selected as described previously [2]: UA,B, = 2aA,&, aB,A, = 2aB,Az, UA,AB = 

uABA, = uB,AB = uABB, = “A,AB = 2aABA, and all aJ, are taken as 0.3. The 
three remaining parameters aA,&, as& and aA,AB are obtained from fitting 
the model to experimental vapour-liquid equilibrium data. For acetic acid 
we take the value of aA,A, = aAlA, = - 100 K [2] and the liquid-phase mole 
fraction dimerisation constant and the enthalpy of hydrogen bond formation 
are K,” = 62 at 20” C and h, = - 26 kJ mol-’ as given by Freedman [4]. 
The temperature-dependence of the dimerisation constant is given by an 
integrated form of the van? Hoff equation: 

K,* = K,*(2O”C) exp[(h,/R)(1/293.15 - l/T)] (6) 
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Values of the solvation constant and the enthalpy of complex formation 
are as follows: KAB = 0.7 at 65” C and h,, = -12.8 kJ mol-’ for acetic 
acid-2-butanone; K,, = 0.6 at 65 o C and h,, = - 11.2 kJ mol-’ for acetic 
acid-ethyl acetate; KAB = 2.0 at 20 o C and h,, = - 14.1 kJ mol-’ for acetic 
acid-water. The new values of K,, and h,, for acetic acid-water are 
different from previous values [2]. Values of h,, were approximately esti- 
mated as h,, = h,/2 - h:, _o, where h:, +. is the molar enthalpy of 
infinite dilution of acetic acid in each binary mixture and was calculated 
from the Redlich-Kister equation [5-71. The value of h_F, _. for acetic 
acid-ethyl acetate was that for acetic acid-methyl acetate at 35 o C [5]. 

The monomer mole fractions of the chemical species present satisfy the 
following equations: 

‘A, + 2Kxx:, + KAB~A,~B, 
XA = 

xA, + 2Kxx:, + 2KABxA,xB, + xB, 

xB, + KABXA,XB, 
XB = 

xA, + 2K.xxi, + 2KABxA,xB, + xB, 

(7) 

(8) 

XA, + XA, + XAB + XB = XA , + K.xx:, + KABXAIXB, + xB, = ’ (9) 

According to Prigogine and Defay [S] the activity of the nominal compo- 
nent is equal to the corresponding monomer activity: 

xA,yA, 
XAYA = * 

@A, 
(10) 

xBYB = xB,YB, (11) 

Equations (10) and (11) are used to reduce vapour-liquid equilibrium data. 
The excess enthalpy of the mixture hE is expressed as the sum of chemical 

and physical contribution terms: 

hE= 
hAK.xxi, + h~BK~~X~,X~, XAhAK,*X,*; 

XA, + 2K,x;, + 2KABXA,XB, + XB, - Xi, + 2K,*x,*; 
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The linear temperature-dependences of the three energy parameters are 
assumed to be 

aA,J% = C’,a, + DA,a,( T- 273.15) 

‘W, = C,,,, + &,A,( T - 273.15) 

aA,AB = cA,AB + DA,AB(T- 273.15) (13) 

CALCULATION PROCEDURE AND RESULTS 

In this work, the vapour-liquid equilibrium and excess enthalpy data of 
binary mixtures containing acetic acid were separately correlated with the 
association model, because a simultaneous correlation of both data usually 
gives larger deviations between calculated and experimental results than a 
separated correlation. First we try to fit the model to experimental vapour- 
liquid equilibrium data in order to obtain an optimum set of the parameters. 
Secondly, using the obtained binary parameters and other pertinent pure- 
component properties, we can calculate the monomer mole fractions of the 
chemical species present for each value of the nominal compositions of the 
excess enthalpy data [I]. 

Vapour-liquid equilibrium data reduction was performed on the basis of 
the following thermodynamic relation: 

&,I; = y,x,P,S# exp[ “‘(P&“)] (14) 

where P is the total pressure, y the nominal vapour-phase mole fraction, P" 
the pure-component vapour pressure and uL the pure-liquid molar volume 
calculated from a modified Rackett equation [9]. The fugacity coefficients $I 
were calculated using the chemical theory of vapour-phase imperfections 

[lO,ll]: 

(15) 

where z is the true vapour-phase mole fraction and Br the free contribution 
to the second virial coefficient. The true vapour-phase mole fractions and 
the fugacity coefficients were calculated as described by Prausnitz et al. [12]. 

A set of optimum binary parameters were sought using a computer 
program which minimises the objective function [12] 

F = ; (PA)* + CT- ri;)” + blr-%)* + (h-A)* 
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1.5- 

4 l ‘ 
1.0’ 4- I 

I I I 1 
0. 0 0.2 0. 4 0. 6 0.8 1.0 

Mole fraction of acetic acid 

Fig. 1. Vapour-liquid equilibria for acetic acid-2-butanone: calculated ( -) and experi- 
mental (0. 68S’C; I, 78” C; data of Rasmussen et al. [13]). 

where a circumflex indicates the most probable calculated value correspond- 
ing to each experimental variable and the standard deviations in the ob- 
served variables were set as oP = 1 Torr, oJT= 0.05 K, a, = 0.001 and 
“, = 0.003 (121. 

The pure-component vapour pressures were taken from original refer- 
ences for vapour-liquid equilibrium data. Table 1 gives detailed results of 
vapour-liquid equilibrium data reduction for three systems. Figures 1 and 2 
compare the experimental and calculated results for acetic acid-2-butanone 
and acetic acid-ethyl acetate. Figures 3 and 4 show how the liquid-phase 
mole fraction dimerisation constant K, changes with liquid composition in 
these two systems. A new set of solvation parameters for acetic acid-water 
gives smaller values of the variance of fit than a previous set [2]. 

In the correlation of excess enthalpy data, the binary parameters given in 
Table 1 were used to obtain the true mole fractions of all chemical species 
for any value of the acid nominal mole fraction xA at a specified tempera- 
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I I I I 
0. 0 0. 2 0. 4 0. 6 0. a 1.0 

Mole fraction of acetic acid 

Fig. 2. Vapour-liquid equilibrium for acetic acid-ethyl acetate at 65 o C: calculated ( -) 
and experimental (0; data of Macedo and Rasmussen [14]). 

ture for the excess enthalpy data as described previously [l]. The six 
constants of eqn. (13) were obtained using the simplex method [17], which 
minimises the sum of squares of deviation in excess enthalpy for all data 

points: 

F2= ; (h,E-ii;)* (17) 
I=1 

Table 2 shows calculated results for excess enthalpy and the calculated 
values are satisfactorily compared with the experimental results in Figs. 5 
and 6. 

We may conclude that the proposed model is able to reproduce the 
vapour-liquid equilibrium and excess enthalpy data of the acetic acid- 
solvating component systems studied with good accuracy. 
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15 
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8 0.5 

Mole fraction of acetic acid 

Fig. 3. Variation in liquid-phase mole fraction dimerisation constant with composition for 
acetic acid-2-butanone: l , 68.5”C; n , 78OC; data of Rasmussen et al. [13]. 

20 

15 

10 

k? 

5 

I 1 0.5 

Mole fraction of acetic acid 

3 

Fig. 4. Variation in liquid-phase mole fraction dimerisation constant with composition for 
acetic acid-ethyl acetate at 65 Q C; n , data of Macedo and Rasmussen [14]. 



Mc+e fmctm of acetic acid 

Fig. 5. Excess enthalpies for acetic acid-2-butanone and acetic acid-ethyl acetate; calculated 

(- ) and experimental (0, acetic acid-2-butanone at 20 “C [6]; q . acetic acid-ethyl 
acetate at 22.5O C; data of Lontin [18]). 

I I I I 

Cl 0.2 0.4 06 08 1.0 

Mole fraction of acetic acid 

Fig. 6. Excess enthalpies for acetic acid-water: calculated ( -) and experimental (0, 

20 o C; A, 40 o C; data from Hasse et al. 171). 
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